This article will explore how to use Anaconda to build a Python machine-learning development environment. After finishing this lesson, you will have a workable Python environment to learn, practice, and develop machine learning and deep learning software.
- Visit the Anaconda homepage.
- Click “Anaconda” from the menu and click “Download” to go to the download page.
- Choose the download suitable for your platform (Windows, or Linux):
- Choose Python’s latest version
- Choose the Graphical Installer
- After downloading the Anaconda for Python, install the Anaconda Python software on your system.
- After successful installation, then start the Anaconda GUI environment.
- Verify the installation and installed version.
c:\> python -V
Python 3.9.13
c:\> conda -V
conda 23.1.0
- Verify the conda and SciPy environment is up-to-date:
c:\> conda update conda
c:\> conda update anaconda
c:\> conda update scikit-learn
- Verify the SciPy environment:
import scipy #scipy
import numpy #numpy
import matplotlib #matplotlib
import pandas #pandas
import statsmodels #statsmodels
import sklearn #scikit-learn
print('scipy: %s' % scipy.__version__)
print('numpy: %s' % numpy.__version__)
print('matplotlib: %s' % matplotlib.__version__)
print('pandas: %s' % pandas.__version__)
print('statsmodels: %s' % statsmodels.__version__)
print('sklearn: %s' % sklearn.__version__)
- Install Deep Learning Libraries
I will recommend you to use Keras for deep learning and It only requires TensorFlow to be installed.
C:\> conda install -c conda-forge tensorflow
OR
C:\> pip install tensorflow
- Check tensorflow installed version
# use jupytor notebook
import tensorflow as tf
print(tf. __version__)
2.12.0
- Install Kares Library
C:\> pip install keras